MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2017

Calculator-Assumed

Marking Key

Section Two: Calculator-assumed

CALCULATOR-ASSUMED MARKING KEY

(100 Marks)

-

Question	7	(a)
----------	---	-----

Solution					
	Suburb	Houses	Units	Blocks	
	EB	54	14	8	
	WB	121	15	43	
	Totals	175	29	51	
Marking key/mathemat	ical behavio	urs	L		Marks
enters given da	ata into corre	ect cells of t	he table		1

Question 7 (b)

Solution					
	Suburb	Houses	Units	Blocks	
	EB	31%	48%	16%	
	WB	69%	52%	84%	
	Totals	100%	100%	100%	
Marking key/mather	natical behavi	ours			Marks
 provides total percentages for each column 				1	
 determines percentages for two types of properties 				1	
determines	percentages f	or a third typ	e of propert	y	1

Question 7 (c)

Solution		
There does not appear to be any association between the suburb and the units sold. The proportions of houses and blocks appear to be linked to the suburb and much higher in West Busselton than in East Bunbury		
Marking key/mathematical behaviours	Marks	
 identifies association of suburb with each type of property 	1	
describes associations clearly	1	
 describes association in terms of proportions 	1	

Question 8 (a)

Solution					
	n	0	1	2	
	Value after <i>n</i> months (\$)	\$2400	\$2304	\$2211	.84
Marking key/mathematical behaviours				Marks	
enters value for 0 and 1 month			1		
•	 enters value after 2 mont 	hs			1

Question 8 (b)

Solution

4% per month	
Marking key/mathematical behaviours	Marks
identifies rate	1

Question 8 (c)

Solution	
$V_n = 2400(0.96)^n$	
Marking key/mathematical behaviours	Marks
identifies starting term and rate	1
uses correct format for the rule	1

Question 8 (d)

Solution	
$2400 \times 0.96^{12} = 1470.50	
Marking key/mathematical behaviours	Marks
identifies rate	1

Question 8 (e)

	Solution	
	% decrease = (2400-1470.50)/2400 x 100 = 38.73%	
	Marking key/mathematical behaviours	Marks
Ē	identifies value of decrease	1
	determines percentage decrease	1

Question 8 (f)	
Solution	
After 39 months. At the end of September 2020	
Marking key/mathematical behaviours	Marks
determines duration	1
 determines end of time interval 	1

Question 9 (a)

Solution	
CEGH 50	
CEJGH 20	
CJGH 10	
CJH 90	
CLJH 20	
CLNH 40	
Total number of trains is 230	
Marking key/mathematical behaviours	Marks
 Determines 2 paths and their respective number of trains 	1
Determines a further 2 paths and their respective number of trains	1
Determines a further 2 paths and their respective number of trains	1
 Determines maximum number of trains 	1

Question 9 (b)

Solution	
190 trains	
Marking key/mathematical behaviours	Marks
determines maximum number possible through J	1

Question 9 (c)	
Solution	
LN by 10, EJ by 10 and GH by 70	
EG by 10 and GH by 60 [Other solutions possible]	
Marking key/mathematical behaviours	Marks
 identifies edges with greater capacity 	1
determines size of extra capacity	1

Question 10 (a)

Solution	
Increasing (or positive) trend	
Marking key/mathematical behaviours	Marks
identifies trend from graph	1

Question 10 (b)

Solution	
Every fourth value is the highest of the four in that year.	
Marking key/mathematical behaviours	Marks
describes seasonality	1

Question 10 (c)

Solution	
Circles the point at (20, 45)	
Marking key/mathematical behaviours	Marks
identifies the outlier	1

Question 10 (d)

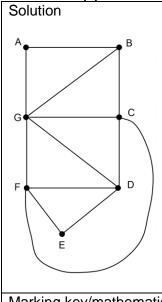
Solution	
$(22 + 21 + 16 + 45) \div 4 = 26$	
Marking key/mathematical behaviours	Marks
determines mean	1

Question 10 (e)

Solution	
170% which indicates the number is well above the average for the 4 seasons in	hat year
Marking key/mathematical behaviours	Marks
determines percentage of seasonal mean	1
describes significance of seasonal mean	1

Question 10 (f)

Solution	
(59% + 103% + 52% + 81% + 72%) ÷ 5 = 73.4%	
Marking key/mathematical behaviours	Marks
calculates seasonal index	1


Question 10 (g)

Solution	
11 ÷ 52% = 21	
Marking key/mathematical behaviours	Marks
applies rule to deseasonalise	1
uses appropriate rounding	1

Question 10 (h)

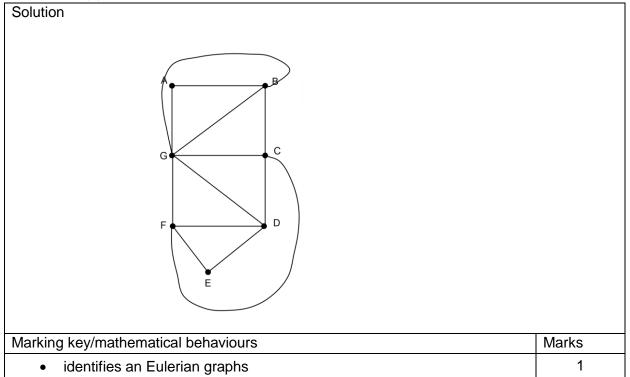
Solution		
Car thefts will continue to rise.		
Need to know that the number of cars parked at the airport will not decrease significantly		
Marking key/mathematical behaviours	Marks	
describes prediction based on data provided	1	
identifies further information needed to support the prediction	1	

Question 11 (a)

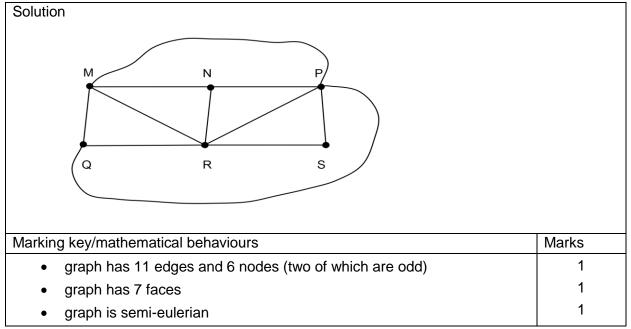
Marking key/mathematical behaviours	Marks
identifies graph in planar form	1

Question11 (b)

Solution	
B and G	
Marking key/mathematical behaviours	Marks
identifies odd vertices	1


Question 11 (c)

Solution	
BCFEDFGDCGABG	
Marking key/mathematical behaviours	Marks
 starts and finishes at the odd vertices 	1
all sequence correct with no more than one leg missing	1
all legs represented	1


Question 11 (d)

Solution	
Graph is connected	
Starts and ends at different nodes	
All edges crossed once only	
Marking key/mathematical behaviours	Marks
describes two features of semi-eulerian graphs	2

Question 11 (e)

Question 11 (f)

Question 12 (a)

So	lution

0.75% or 0.0075	
Marking key/mathematical behaviours	Marks
calculates monthly interest rate	1

Question 12 (b)

Solution	
$B_{n+1} = 1.0075B_n + 200, B_0 = 1000$	
Marking key/mathematical behaviours	Marks
uses equation to determine deseasonal value	1
makes seasonal adjustment	1

Question 12 (c)

Solution	
\$1627.18, \$12.20, \$200.00, \$1839.38	
Marking key/mathematical behaviours	Marks
enters values given in question	1
calculates interest	1
 determines account balance at end of month 	1
Rounds all values to nearest cent	1

Question 12 (d)

Solution	
After 18 months. / By the end of the 19 th month.	
Marking key/mathematical behaviours	Marks
Indicates time total reached	1

Question 12 (e)

Solution	
\$5220.38 - (1000 + 19 x 200)= \$420.38	
Marking key/mathematical behaviours	Marks
determines total deposit	1
calculates total interest	1

Question 12 (f)

Solution	
Yes, No, Yes, Yes	
Marking key/mathematical behaviours	Marks
 identifies influence of each of 4 factors on the investment growth 	4

Question 13 (a)

Solution	
ZQRE 31 hours	
Marking key/mathematical behaviours	Marks
identifies critical path	1
determines minim time	1

Question 13 (b)

Solution	
After 21 hours	
Marking key/mathematical behaviours	Marks
identifies earliest start time	1

Question 13 (c)

Solution	
8 hours from commencement	
Marking key/mathematical behaviours	Marks
identifies latest start time	1

Question 13 (d)

Solution	
9 hours	
Marking key/mathematical behaviours	Marks
determines float time	1

Question 13 (e)

Solution	
Critical path in unchanged and minimum completion time reaches 34 hours	
Marking key/mathematical behaviours	Marks
determines effect of change on critical path	1
determines effect of change on minimum completion time	1

1

Question 14 (a)

Solution	
\$10 956.90	
Marking key/mathematical behaviours	Marks
calculates future value	1

Question 14 (b)

Solution				
$i_{effective} = \left(1 + \frac{i}{n}\right)^n - 1 = (1 + 0.0305/12)^{12} - 1 = 0.03093$ So 3.09%				
Marking key/mathematical behaviours	Marks			
substitutes into formula	1			
calculates effective rate of interest				
gives interest as a percentage correct to 2 decimal places				

Question 14 (c)

Solution	
----------	--

Yes – the interest rate is higher than the 3.09% effective rate of interest	
Marking key/mathematical behaviours	Marks
concludes in the affirmative	1
 compares 3.10% to the effective rate of interest 	1

Question 14 (d)

Solution	
With a higher annual interest rate With interest compounded more frequently	
Marking key/mathematical behaviours	Marks
identifies two different ways to increase the value of the investment	2

Question 15 (a)

Solu	tion						
$\left[0 \right]$	0	1	0	0	0		
1	0	1	0	0	0		
0	1	0	0	0	1		
0	0	1	0	1	0		
0	0	0	1	0	1		
1	0	0	1	1	0		
Mark	king	key/	/mat	hem	atica	al behaviours	Marks
	• ;	all di	iago	nal e	entrie	es are 0	1
all 0s correct		1					
	• ;	all 1:	s co	rrect			1

Question 15 (b)

Solution					
Person A					
The total of the numbers in their column is the highest					
Marking key/mathematical behaviours	Marks				
interprets adjacency matrix	1				
describes values in adjacency matrix	1				

Question 15 (c)

Solu	ution					
(i)					ТР	
0	4	1	5	2		
4	0	5	1	2	J	
1	5	2	6	4	Н	
5	1	6	2	4	В	
\lfloor_2	2	4	4	2		
(ii)	Ther	e are	e 2. J	HPB and	IJTPB	
Mar	king l	key/n	nathe	ematical	pehaviours	Marks
determines cube of matrix						1
 determines number of three-stage communications 						1
 names each three-stage communication 						1

Marks

1

Question 16 (a)

Solution	
DADEC = -0.142 X 25 + 13.4 = 9.85 103% of 9.85 = 10.1	
Marking key/mathematical behaviours	Marks
substitutes into equation	1
determines deseasonalised value	1
adjusts using seasonal index	1

Question 16 (b)

Solution

Not very reliable as the numbers used are averages / the June 2014 figure could be atypical of the June average and this could make the seasonal average lower than the long term trend for that seasonal average.

Marking key/mathematical behaviours

٠	identifies prediction not very reliable	1
•	explains lack of reliability	1

Question 16 (c)

Solution	
Deseasonalised data (DADEC) = $-0.219t + 14.8$	
Marking key/mathematical behaviours	Marks
determines gradient and y-intercept	1
expresses relationship in linear form with correct variables	1

Question 16 (d)

The rate for the last two years shows an increasing downward trend (-0.219 compared to -0.142). This indicates that the trend for the first two years was less negative and maybe even
positive. The gradient of the line for that period would have been greater than -0.142.Marking key/mathematical behavioursMarks• describes the trend for the first two years1

• justifies the description of the change

Question 17 (a)

Solution	
450 000 x 0.95 x 1.085 = \$463 837. 50	
Marking key/mathematical behaviours	Marks
states an expression to calculate value using percentage decrease	1
determines value of investment	1

Question 17 (b)

Solution	
\$1471.15	
Image: Second system Image: Second system	
Marking key/mathematical behaviours	Marks
 identifies all correct variables 	1
determines withdrawal amount	1

Question 17 (c)

Solution		
After the first 5 years, the superannuation is worth \$331 856.95		
[N=5, I% = 6.5, PV= 450000, PMT=50000,FV=?]		
After the next 5 years, the superannuation is worth \$198 458.94		
[N=5, I% = 6.5, PV= =\$331 856.95400000, PMT=\$45 000,FV=?]		
He can only take a salary of \$40000 for the next 6 years after that (16 years all together)		
[N=?, I%=6.5, PV = 198 458.94, FV=0]		
Marking key/mathematical behaviours	Marks	
determines value after 5 years	1	
determines value after 10 years	1	
 determines duration of the investment 	1	